
 ____ ____________________________
 Basic / | / // \ \
 / | / // /\ \ _________\
 / |/ // / \ \ \
 / /| /| //__/______\ \ Cracking
 / / | / | //____________\ __________
 / / | / | // / \ \ \
 /____/ | / |//__/ ________________\

 Part IV: Net Watchman revisited
 by The Observer, released 12/19/95

Hello, Net Watchman.
My name is The Observer.
You killed my father.
Prepare to DIE.

OK, maybe this quote from The Princess Bride is a bit dramatic. But that's the
attitude I came back to Net Watchman with. It had stumped me before, but now
that I could get around worth a damn in Macsbug, I was ready to try again.

If you're following this series, you may remember that Net Watchman's demo has
three limitations:
1. It only runs for 10 minutes
2. It deletes the files containing all the setup you'd done
3. It won't print

Basic MacCracking II got past limitation 1. Number 2 was the most serious of
the remaining two, so that's where I decided to start. One reason I couldn't
get this before was that the only mention of "Delete" in the code was a call
to the _Delete OS trap, which isn't in Inside Mac. I had tried NOP'ing this
and other parts of its subprogram, but doing this always caused an error when
making a new file.

The Hunt
There are, intelligently enough, two points at which the demo deletes its
files: when you close a file, and when you quit. Given that CODE 2 contains a
subprogram called Terminate (which we remember from part II is involved in
quitting), this was an easy place to start.

We find Terminate's absolute offset in CODE 2, 4D52. Then we open the program
and break into Macsbug. To break at Terminate, we need the address of CODE 2
in Net Watchman's application heap. To see this, enter "hd". (Make sure that
CurApName, in the middle of the vertical bar on the left, is Net Watchman! (Or
at least "Net Watchm...") It frequently does not correspond to the frontmost
application. To get it to be the frontmost app, click in the menu bar a few
times.)

A lot of junk will scroll down now. All you want is CODE 0002--look for it.
Here are a few actual lines, including one with CODE 2: (your results will
vary)
 Displaying the “Net Watchman 2.1 Demo” heap at 0131FE90

 Start Length Tag Mstr Ptr Lock Prg Type ID File Name
 • 0131FED0 00000100+04 N
 • 0131FFE0 00000242+02 R 0131FFC4 L CODE 0001 189C
 • 01320230 00000044+00 R 0131FFC0 L
 • 01320280 00000044+00 R 0131FFBC L
[...]
 • 01320580 00000014+00 N
 • 013205A0 0000655A+0A R 0131FF90 L P CODE 0002 189C

Once you find CODE 2's line, go to the leftmost hex number (in the sample
above, 013205A0). In my experience, this number is constant until you quit the
application, and I suspect this is actually the case.

Let's say you get 013205A0 as well. To break at offset 4D52 in CODE 2, tell
Macsbug:
br 013205A0+4D52
And Macsbug will reply:
Break at 013252F2 (Terminate) every time

013252F2 is just the memory address resulting from the addition of 013205A0
and 4D52. You could have done this yourself, but Macsbug does a fine job of
it. So now we're going to break into Macsbug when Terminate begins to execute.
An alternate way to have done this would be to type "br Terminate". This
method is easier, but doesn't work when the subprogram names aren't in the
assembly.

Sure enough, we hit cmd-q, and poof, Macsbug appears. Enter "t" to start
stepping through the code. In just a little bit we come to this line:
+00030 012B09B2 JSR CloseAlertFile | 4EAD
092A

When it's the next line up for execution (marked with an asterisk), enter "s".
This sends you into the CloseAlertFile subprogram. Once you're there, start
using "t" again, to keep things moving along. Almost immediately, we come to:
+00004 012B3574 JSR QBKillAll | 4EAD
03DA

Killing might well have some connection to deleting, so let's use s to step
into QBKillAll. We go through it until we find another likely candidate to
step into:
+0000C 012B96E6 JSR QBKill ; 012B9706 | 4EBA
001E

Ever progressing, QBKill contains this line:
+00046 012B974C JSR KillNBP | 4EAD
097A

And finally, we can step through KillNBP in its entirety:
 +00000 012B87A6 LINK A6,#$FFFC | 4E56
FFFC
 +00004 012B87AA MOVEM.L D7/A4,-(A7) | 48E7
0108
 +00008 012B87AE MOVEA.L $0008(A6),A4 | 286E
0008

 +0000C 012B87B2 MOVEQ #$00,D7 | 7E00
 +0000E 012B87B4 CMPI.W #$0001,$0010(A4) | 0C6C
0001 0010
 +00014 012B87BA BNE.S KillNBP+00074 ; 012B881A | 665E
 +00074 012B881A TST.L $0022(A4) | 4AAC
0022
 +00078 012B881E BEQ.S KillNBP+00084 ; 012B882A | 670A
 +00084 012B882A MOVEM.L -$000C(A6),D7/A4 | 4CEE
1080 FFF4
 +0008A 012B8830 UNLK A6 | 4E5E
 +0008C 012B8832 RTS | 4E75

Fun as going deeper and deeper here has been, there's unfortunately a problem;
we're never calling _Delete. Perhaps there's another way of doing it that is
here? We can't tell. So let's just keep going through the code. We pass the
end of KillNBP, then QBKill. QBKillAll, however, now proceeds to call QBKill--
and in it, KillNBP--a second time. Net Watchman only deletes one file when it
quits. This makes it seem fairly unlikely that any of these is responsible for
the deletions.

So now we're back in CloseAlertFile, and there's nothing to do but keep
trudging on:
+00008 012B3578 MOVE.W #$FFFF,-(A7) | 3F3C FFFF
+0000C 012B357C CLR.L -(A7) | 42A7
+0000E 012B357E JSR WOAlertRsrc ; 012B685E | 4EBA 32DE

We could go through WOAlertRsrc and see if it calls _Delete eventually, but
its name doesn't immediately sound like it does anything with files. We'll
keep it in mind in case we get stuck later, though.
+0001C 012B358C CLR.W (A7) | 4257
+0001E 012B358E PEA -$0100(A6) | 486E FF00
+00022 012B3592 MOVE.W -$13B0(A5),-(A7) | 3F2D EC50
+00026 012B3596 JSR 'CODE 0002 183E'+02FA0 | 4EAD 02BA

Oooh! There! The subprogram with _Delete is unnamed (those using Resorcerer
will see it as <Anon_11>). And it occurs in CODE 2 at offset 2FA0. This looks
like what we've been waiting for. To make sure, we'll step into it. As we
expected, it contains the following line:
+02FB6 012AEBE6 _Delete ; 001A8366 | A009

The Kill
So now we know Terminate offset 26 is calling CloseAlertFile, which in turn
calls an unnamed subprogram to delete our files. As playing the with the
unnamed subprogram (CODE 2+2FA0) itself gives us errors we have to get rid of
the code which calls the subprogram. We saw in the second code snippet above
that it's at offset 26 in CloseAlertFile. Hopping into Resorcerer, we find
what it looks like when it's not being executed:
+26
jsr $02BA(a5) ; 4EAD 02BA

The actual code contains no reference to what it calls, which is why I
couldn't get it without the Macsbug knowledge I picked up in writing part III.
In any case, let's try NOP'ing this line.

And it works! Not only when we quit, but whatever you're doing when you close
a file apparently calls this procedure as well. Pretty slick. So the file
deletions, as it turns out, wasn't such a tricky problem after all.

Printing Problems
Now we have to coax it to print. First, we have an observation from part II
which turned out to be fairly useless. We find a subprogram in CODE 4 called
PrintWindow. If we were to follow a cmd-p keystroke with Macsbug, we'd find
that it does engage this subprogram to print. We find the following snippet in
Resorcerer:
beq.s PrintWindow+$4E
move.w #$000C,-(sp)
jsr $014A(a5)
addq.l #$2,sp
move.l #-$30000000,-(sp)

Conditional branches are of course a great way to do or not do something
depending on whether or not the program is registered, so let's use Macsbug
("br PrintWindow") to find out where the jsr is going.
+00042 00A6085C BEQ.S PrintWindow+0004E ; 00A60868 | 670A
+00044 00A6085E MOVE.W #$000C,-(A7) | 3F3C 000C
+00048 00A60862 JSR DoNoteAlert | 4EAD 014A�

+0004C 00A60866 ADDQ.L #$2,A7 | 548F
+0004E 00A60868 MOVE.L #$D0000000,-(A7) | 2F3C D000
0000

Bingo! It's the one calling DoNoteAlert. Let's swap the conditional branch-if-
equal BEQ for a straight, always-branch BRA.

No alert box pops up, unsurprisingly. But nothing prints either! Apparently
the call to the printing routine is missing from the code. So it looks like
cracks for this file were just destined to come out bit by bit; I still can't
overcome the printing limitation.

However, here are some fun things to look at in Net Watchman (aka things I
tried that didn't work).
Follow PrintWindow all the way through, including GetPrintHandle and
UnloadNonPrintSegs.
Check out the ValidatePeek and ValidatePeekWork procedures in CODE 13. See how
VPW pops up the registration dialog box?

OK, so just two fun things. Assembly does get boring sometimes.

Another twofer:
Shareware program called Personal Log. Asks you to register it each time you
open it. NOP'ing the procedure HandleRegisterCopy (where the registration box
pops up--you can find this easily by now, right?) causes the program to crash.
But is this procedure always called? Where is it called? Once you find this
out with Macsbug, check to see if there's a branch near it that might be the
registered/unregistered branch...

For an extra point, get the "about" box to display the registration info of

your choice (this one is kinda silly).

Conclusion junk...
So I still can't get this stupid program to print. It will happen. Some day,
it will happen. The fact it doesn't delete its settings files and runs for 10
minutes makes it a functional program, though. Printing is more or less fluff.

I have a pretty good idea for Part V, but I don't know if it will work out or
not. And I'd hate for this to grind to a crawl just because I have to spend
all my time combing the net for demos. Hell, I'll even extend an offer of fame
to those who submit/suggest things to try--want your name in a Basic
MacCracking file? Get those demos in. So when you think crippled software,
think Observer! And mail me at one of these addresses. :-)
Observer on Kn0wledge Phreak (719-578-8288), The Keep, or
an407599@anon.penet.fi.

Yet another thing to read!
While I can't endorse it over any others, I found a copy of Tibet Mimar's
"Programming and Designing with the 68000 Family." It's a pretty good
reference for straight assembly, but can get wordy sometimes. Some things it
talks about are neat to know, if not that useful (did you know there was a
68008, an 8-bit 68000?) It's from '91, so it only goes up to the 68030. But it
was a kick to actually see all these things I've been working with these past
few months actually printed in a book, and a dedicated assembly reference has
really been a help.

